Two-level time-marching scheme using splines for solving the advection equation

نویسندگان

  • Khoi Nguyen
  • Donald Dabdub
چکیده

A new numerical algorithm using quintic splines is developed and analyzed: quintic spline Taylor-series expansion (QSTSE). QSTSE is an Eulerian #ux-based scheme that uses quintic splines to compute space derivatives and Taylor series expansion to march in time. The new scheme is strictly mass conservative and positive de"nite while maintaining high peak retention. The new algorithm is compared against accurate space derivatives (ASD), Galerkin "nite element techniques, and the Bott scheme. The cases presented include classical rotational "elds, deformative "elds, as well as a full-scale aerosol model. Research shows that QSTSE presents signi"cant improvements in speed and oscillation suppression against ASD. Furthermore, QSTSE predicts some of the most accurate results among the schemes tested. ( 2001 Elsevier Science Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines

In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

متن کامل

A Comparison of Some Numerical Methods for the Advection-Diffusion Equation

This paper describes a comparison of some numerical methods for solving the advection-diffusion (AD) equation which may be used to describe transport of a pollutant. The one-dimensional advection-diffusion equation is solved by using cubic splines (the natural cubic spline and a ”special” AD cubic spline) to estimate first and second derivatives, and also by solving the same problem using two s...

متن کامل

A Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations

In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001